Algebraic geometrical methods for hierarchical learning machines

نویسنده

  • Sumio Watanabe
چکیده

Hierarchical learning machines such as layered perceptrons, radial basis functions, Gaussian mixtures are non-identifiable learning machines, whose Fisher information matrices are not positive definite. This fact shows that conventional statistical asymptotic theory cannot be applied to neural network learning theory, for example either the Bayesian a posteriori probability distribution does not converge to the Gaussian distribution, or the generalization error is not in proportion to the number of parameters. The purpose of this paper is to overcome this problem and to clarify the relation between the learning curve of a hierarchical learning machine and the algebraic geometrical structure of the parameter space. We establish an algorithm to calculate the Bayesian stochastic complexity based on blowing-up technology in algebraic geometry and prove that the Bayesian generalization error of a hierarchical learning machine is smaller than that of a regular statistical model, even if the true distribution is not contained in the parametric model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Analysis for Nonidentifiable Learning Machines

This article clarifies the relation between the learning curve and the algebraic geometrical structure of an unidentifiable learning machine such as a multilayer neural network whose true parameter set is an analytic set with singular points. By using a concept in algebraic analysis, we rigorously prove that the Bayesian stochastic complexity or the free energy is asymptotically equal to lambda...

متن کامل

Algebraic Analysis for Non-regular Learning Machines

Hierarchical learning machines are non-regular and non-identifiable statistical models, whose true parameter sets are analytic sets with singularities. Using algebraic analysis, we rigorously prove that the stochastic complexity of a non-identifiable learning machine is asymptotically equal to λ1 log n − (m1 − 1) log logn + const., where n is the number of training samples. Moreover we show tha...

متن کامل

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

Stochastic Complexity and Newton Diagram

Many singular learning machines such as neural networks and mixture models are used in the information engineering field. In spite of their wide range applications, their mathematical foundation of analysis is not yet constructed because of the singularities in the parameter space. In recent years, we developed the algebraic geometrical method that shows the relation between the efficiency in B...

متن کامل

Algebraic Information Geometry for Learning Machines with Singularities

Algebraic geometry is essential to learning theory. In hierarchical learning machines such as layered neural networks and gaussian mixtures, the asymptotic normality does not hold, since Fisher information matrices are singular. In this paper, the rigorous asymptotic form of the stochastic complexity is clarified based on resolution of singularities and two different problems are studied. (1) I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 14 8  شماره 

صفحات  -

تاریخ انتشار 2001